
Transient Neural Radiance Fields
for Lidar View Synthesis and 3D Reconstruction

Anagh Malik1,2,* Parsa Mirdehghan1,2 Sotiris Nousias1

Kiriakos N. Kutulakos1,2 David B. Lindell1,2

1University of Toronto 2Vector Institute
anaghmalik.com/TransientNeRF

Abstract

Neural radiance fields (NeRFs) have become a ubiqui-
tous tool for modeling scene appearance and geometry from
multiview imagery. Recent work has also begun to explore
how to use additional supervision from lidar or depth sen-
sor measurements in the NeRF framework. However, pre-
vious lidar-supervised NeRFs focus on rendering conven-
tional camera imagery and use lidar-derived point cloud
data as auxiliary supervision; thus, they fail to incorporate
the underlying image formation model of the lidar. Here,
we propose a novel method for rendering transient NeRFs
that take as input the raw, time-resolved photon count his-
tograms measured by a single-photon lidar system, and we
seek to render such histograms from novel views. Different
from conventional NeRFs, the approach relies on a time-
resolved version of the volume rendering equation to render
the lidar measurements and capture transient light trans-
port phenomena at picosecond timescales. We evaluate
our method on a first-of-its-kind dataset of simulated and
captured transient multiview scans from a prototype single-
photon lidar. Overall, our work brings NeRFs to a new di-
mension of imaging at transient timescales, newly enabling
rendering of transient imagery from novel views. Addition-
ally, we show that our approach recovers improved geome-
try and conventional appearance compared to point cloud-
based supervision when training on few input viewpoints.
Transient NeRFs may be especially useful for applications
which seek to simulate raw lidar measurements for down-
stream tasks in autonomous driving, robotics, and remote
sensing.

1. Introduction
The ability to sense and reconstruct 3D appearance and

geometry is critical to applications in vision, graphics, and
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beyond. Lidar sensors [50] are of particular interest for
this task due to their high sensitivity to arriving photons
and their extremely high temporal resolution; as such, they
are being deployed in systems for 3D imaging in smart
phone cameras [6], autonomous driving, and remote sens-
ing [49]. Recent work has also begun to explore how addi-
tional supervision from lidar [46] or depth sensor measure-
ments [2] can be incorporated into the NeRF framework to
improve novel view synthesis and 3D reconstruction. Ex-
isting NeRF-based methods that use lidar [46] are limited
to rendering conventional RGB images, and use lidar point
clouds (i.e., pre-processed lidar measurements) as auxiliary
supervision rather than rendering the raw data that lidar
systems actually collect. Specifically, lidars capture tran-
sient images—time-resolved picosecond- or nanosecond-
scale measurements of a pulse of light travelling to a scene
point and back. We consider the problem of how to synthe-
size such transients from novel viewpoints. In particular, we
seek a method that takes as input and renders transients in
the form of time-resolved photon count histograms captured
by a single-photon lidar system1 [45]. Lidar view synthe-
sis may be useful for applications which seek to simulate
raw lidar measurements for downstream tasks, including
autonomous driving, robotics, remote sensing, and virtual
reality.

The acquisition and reconstruction of transient measure-
ments has been studied across various different sensing
modalities, including holography [1], photonic mixer de-
vices [13, 15] streak cameras [57], and single-photon detec-
tors (SPADs) [36, 18].

In the context of SPADs and single-photon lidar, a tran-
sient is measured by repeatedly illuminating a point with
pulses of light and accumulating the individual photon ar-
rival times into a time-resolved histogram. After captur-

1Single-photon lidars are closely related to conventional lidar systems
based on avalanche photo diodes [4], but they have improved sensitivity
and timing resolution (discussed in Section 2); other types of coherent lidar
systems [39] are outside the scope considered here.
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Figure 1. Overview of transient neural radiance fields (Transient NeRFs). Measurements from a single-photon lidar are captured using
a single-photon avalanche diode (SPAD), pulsed laser, scanning mirrors and a time-correlated single photon counter (TCSPC). The lidar
scans, consisting of a 2D array of photon count histograms (visualized with maximum-intensity projection), are captured from multiple
viewpoints and used to optimize the transient NeRF. After training, we render novel views of time-resolved lidar measurements (x–y and
x–t slices are indicated by the dotted red lines), and we also convert the rendered data into intensity and depth maps.

ing such histograms for each point in a scene, one can ex-
ploit their rich spatio-temporal structure for scene recon-
struction [23, 38], to uncover statistical properties of cap-
tured photons [41, 43], and to reveal the temporal profile of
the laser pulse used to probe the scene (knowledge of which
can significantly improve depth resolution [12, 40]). These
properties motivate transients as a representation and their
synthesis from novel views. While existing methods have
explored multiview lidar reconstruction [14, 65, 22, 20, 27],
they exclusively use point cloud data, and do not tackle lidar
view synthesis.

Recently, a number of NeRF-based methods for 3D
scene modeling have also been proposed to incorporate
point cloud data (e.g., from lidar or structure from mo-
tion) [7, 47] or information from time-of-flight sensors [2].
Again, these methods focus on synthesizing conventional
RGB images or depth maps, while our approach synthe-
sizes transient images. Another class of methods combines
NeRFs with single-photon lidar data for non-line-of-sight
imaging [9]; however, they focus on a very different inverse
problem and scene parameterization [51], and do not aim to
perform novel view synthesis of lidar data as we do.

Our approach, illustrated in Fig. 1, extends neural radi-
ance fields to be compatible with a statistical model of time-
resolved measurements captured by a single-photon lidar
system. The method takes as input multiview scans from
a single-photon lidar and, after training, enables rendering
lidar measurements from novel views. Moreover, accurate
depth maps or intensity images can also be rendered from
the learned representation.

In summary, we make the following contributions.
• We develop a novel time-resolved volumetric image for-

mation model for single-photon lidar and introduce tran-

sient neural radiance fields for lidar view synthesis and
3D reconstruction.

• We assemble a first-of-its-kind dataset of simulated and
captured transient multiview scans, constructed using a
prototype multiview single-photon lidar system.

• We use the dataset to demonstrate new capabilities in
transient view synthesis and state-of-the-art results on 3D
reconstruction and appearance modeling from few (2–5)
single-photon lidar scans of a scene.

2. Related work

Our work ties together threads from multiple areas of
previous research, including methods for imaging with
single-photon sensors, and NeRF-based pipelines that lever-
age 3D information to improve reconstruction quality. Our
implementation also builds on recent frameworks that im-
prove the computational efficiency of NeRF training [32,
21].

Active single-photon imaging. Single-photon sensors
output precise timestamps corresponding to the arrival
times of individual detected photons. The most com-
mon type of single-photon sensor is the single-photon
avalanche diode (SPAD). SPADs are based on the widely-
available CMOS technology [62] (which we consider in
this work), but other technologies such as superconduct-
ing nanowire single-photon detectors [34] and silicon pho-
tomultipliers [3], offer different tradeoffs in terms of sensi-
tivity, temporal resolution, and cost.

In active imaging scenarios, pulsed light sources are
paired with single-photon sensors to estimate depth or re-
flectance of a scene by applying computational algorithms
to the captured photon timestamps [52, 54, 12]. The ex-



treme temporal resolution of these sensors also enables di-
rect capture of interactions of light with a scene at picosec-
ond timescales [10, 24], and by modeling and inverting the
time-resolved scattering of light, single-photon sensors can
be used to see around corners [9, 44, 59, 5] or through scat-
tering media [25, 64, 55]. The extreme sensitivity of single-
photon sensors has made them an attractive technology for
autonomous navigation [45], and accurate depth acquisition
from mobile phones [6].

Our approach differs significantly from all the previous
work in that we investigate, for the first time, the problem
of lidar view synthesis and multi-view 3D reconstruction
in the single-photon lidar regime. We introduce the frame-
work of transient NeRFs for this task and jointly optimize
a representation of scene geometry and appearance that is
consistent with captured photon timestamps across all input
views.

3D-informed neural radiance fields. A number of recent
techniques for multiview reconstruction using NeRFs lever-
age additional geometric information (sparse point clouds
from lidar [46] or structure from motion [7, 47]) to im-
prove the reconstruction quality or reduce the number of
required input viewpoints. Similar benefits can be obtained
by combining volume rendering with monocular depth esti-
mators [61], or using data from time-of-flight sensors [2].
Other methods investigate the problem of view synthesis
from few input images but leverage appearance priors in-
stead of explicit depth supervision [35, 60, 53]. In contrast
to the proposed approach, all of these methods focus on re-
constructing images or depth maps rather than transient his-
tograms.

3. Transient Neural Radiance Fields
We describe a mathematical model for transient mea-

surements captured using single-photon lidar and propose
a time-resolved volume rendering formulation compatible
with neural radiance fields.

3.1. Image Formation Model

Consider that a laser pulse illuminates a point in a scene
that is imaged onto a sensor at position p ∈ R2 (see Fig. 2).
Assume light from the laser pulse propagates to a surface
and back to p along the same path described by a ray r(t),
where t indicates propagation time. The forward path along
the ray is given as r(t) = x(p)+tcω(p), where x(p) ∈ R3

is the ray origin, ω(p) ∈ S2 is the ray direction which
maps to p, and c is the speed of light. Now, let f(t) de-
note the temporal impulse response of the lidar (including
the temporal profile of the laser pulse and the sensor jit-
ter), and let α(p) incorporate reflectance and radiometric
falloff factors [41] of the illuminated point at distance z(p)
from x(p). Then, assuming single-bounce light transport,

the photon arrival rate incident on the sensor from the laser
pulse is given as

λ[i, j, n] =

∫
Pi,j

∫
Tn

α(p) f

(
t− 2z(p)

c

)
dtdp, (1)

where Tn and Pi,j indicate the temporal and spatial dis-
cretization intervals for the time bin n and pixel i, j, re-
spectively. The term 2z/c gives the time delay for light to
propagate to a point at distance z and back.

Now, we can describe the measured transient, or the
number of photon detections captured by a SPAD [41], as

τ̃ [i, j, n] ∼ POISSON (Nη λ[i, j, n] +B) ,
(2)

B = N(ηA[i, j] + d). (3)

where N indicates the number of laser pulses per pixel,
η ∈ (0, 1) is the detection efficiency of the sensor, and B
is the total number of background (non-laser pulse) detec-
tions. Background detections in turn depend on A, the av-
erage ambient photon rate at pixel [i, j], and d, number of
false detections produced by the sensor per laser pulse pe-
riod, also known as the dark count rate. When the number
of detected photons is far fewer than the number of laser
pulses, SPAD measurements can be modeled according to a
Poisson process [41] where the arrival rate function varies
across space and time. This model is appropriate for our
measurements, which have relatively low flux (< 5% de-
tection probability per emitted laser pulse) [12]. The result-
ing measurements τ̃ [i, j, n] represent a noisy histogram of
photon counts collected at pixel [i, j] at time bin n.

3.2. Time-Resolved Volume Rendering

Using the measurements τ̃ , we wish to optimize a repre-
sentation of the appearance and geometry of the scene. To
this end, we propose a time-resolved version of the volume
rendering equation used in NeRF [31, 16]. Specifically, we
model clean (i.e., without Poisson noise) time-resolved his-
tograms τ [i, j, n] as (writing r(t) as r for brevity)

τ [i, j, n] =

∫
Pi,j

∫
Tn

(tc)−2 T (t)2σ(r)c(r,ω) dtdp,

(4)

where T (t) = exp

(
−
∫ t

t0

σ(r) ds

)
.

We denote by c the radiance of light scattered at a point
r(t) in the direction ω, and σ represents the volume den-
sity or the differential probability of ray termination at r(t).
Finally, T (t) is the transmittance from a distance t0 along
the ray to t, and this term is squared to reflect the two-way
propagation of light [2]. We additionally explicitly account
for the inverse-square falloff of intensity, through the term
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Figure 2. Rendering transient neural radiance fields. We cast rays through a volume and retrieve the density and color at each point using
a neural representation [32]. A time-resolved measurement is constructed using volume rendering 5, and we bin the radiance contributions
into an array based on distance along the ray. The result is convolved with the impulse response of the lidar (which incorporates the
shape of the laser pulse), and we supervise the neural representation based on the difference between the rendered and captured transient
measurements.

(tc)−2. The definite integrals are evaluated over the extent
of time bin n, Tn = [tn−1, tn], and over p within the area of
pixel [i, j] as in Equation 1. Note that in practice, we calcu-
late Equation 1 using the discretization scheme of Max [29]
used by Mildenhall et al. [31].

Finally, to account for the temporal spread of the laser
pulse and sensor jitter, we convolve the estimated transient
with the calibrated impulse response of the lidar system f
to obtain

τ f = f ∗ τ . (5)

Without this step, the volumetric model of Equation 5
does not match the raw data from the lidar system and tends
to produce thick clouds of density around surfaces to com-
pensate for this mismatch.

3.3. Reconstruction

To reconstruct transient NeRFs, we use lidar measure-
ments τ̃ (k)[i, j, n] of a scene captured from different view-
points 0 ≤ k ≤ K − 1. We parameterize transient NeRF
using a neural network F consisting of a hash grid of fea-
tures and a multi-layer perceptron decoder [32]. The net-
work takes as input a coordinate and viewing direcion, and
outputs radiance and density, F(r(t),ω) = c, σ. We use
these outputs to render transients (see Fig. 2). The model
is optimized to minimize the difference between the ren-
dered transient and measured photon count histograms. We
also introduce a modified loss function to account for the
high dynamic range of lidar measurements, and we propose
a space carving regularization penalty to help mitigate con-
vergence to local minima in the optimization.

HDR-Informed loss function. Measurements from a sin-
gle photon sensor can have a dynamic range that spans mul-
tiple orders of magnitude, with each pixel recording from
zero to thousands of photons. We find that applying two

exponential functions to the radiance preactivations (1) en-
forces non-negativity and (2) improves the dynamic range
of the network output. Thus, we have c = exp(exp(ĉ))−1,
where the network preactivations are given by ĉ. Following
Muller et al. [32] the network also predicts density in log
space.

After time-resolved volume rendering using Equation 5,
we apply a loss function in log space to prevent the brightest
regions from dominating the loss [30]. The loss function is
given as:

Lτ =
∑

k,i,j,n

∥ ln(τ̃ (k)[i, j, n] + 1)− ln(τ
(k)
f [i, j, n] + 1)∥1,

(6)

where the sum is over all images, pixels, and time bins.

Space carving regularization. We find that using the
above loss function alone results in spurious patches of den-
sity in front of dark surfaces in a scene. Here, the network
can predict bright values on the surface itself, but darkens
the corresponding values of τ f by placing additional spu-
rious density values along the ray. Since the network can
predict the radiance of the density to be zero at these points,
the predicted transients τ f can be entirely consistent with
the measured transients τ̃ , but with incorrect geometry. To
address this, we introduce a space carving regularization

Lsc =
∑

k,i,j,n

τ̃ (k)[i,j,n]<B

∫
Pi,j

∫
Tn

T (t)σ(r) dtdp. (7)

This function penalizes any density along a ray at loca-
tions where the corresponding measured transient values are
less than the expected background level B. This effectively
forces space to be empty (i.e., zero density) at regions where
the measurements do not indicate the presence of a surface.

The complete loss function used for training is then given
as

L = Lτ + λscLsc, (8)



where λsc controls the strength of the space carving regular-
ization.

3.4. Implementation Details

Our implementation is based on the NerfAcc [21] ver-
sion of Instant-NGP [32], which we extend to incorporate
our time-resolved volume rendering equation. In particular,
we extend the framework to output time-resolved transient
measurements, to account for the pixel footprint, and to es-
timate depth.

Pixel footprint. We use a truncated Gaussian distribution
to model the spatial footprint of the laser spot and SPAD
sensor projected onto the scene. We sample rays in the
range of 4 standard deviations of the pixel center, weight-
ing their contribution to the rendered transient by the corre-
sponding Gaussian probability density function value. We
set the standard deviation of the Gaussian to 0.15 pixels
for the simulated dataset and 0.10 pixels for the captured
dataset.

Depth. To estimate depth we find the distance along each
ray that results in the maximum probability of ray termina-
tion: argmaxt T (t)σ(t). Note that when integrating over
the pixel footprint at occlusion boundaries, multiple local
extrema can occur, and so taking the highest peak results in
a single depth estimate without floating pixel artifacts.

Network optimization. We optimize the network using
the Adam optimizer [17], a learning rate of 1× 10−3 and a
multi-step learning rate decay of γ = 0.33 applied at 100K,
150K, and 180K iterations. We set the batch size to 512
pixels and optimize the simulated results until they appear
to converge, or for 250K iterations for the simulated results
and 150K iterations for the captured results. For the weight-
ing of the space carving loss, we use λsc = 10−3 for the
simulated dataset and increase this to λsc = 10−2 for cap-
tured data, which benefits from additional regularization.
We train the network on a single NVIDIA A40 GPU.

4. Multiview Lidar Dataset
We introduce a first-of-its-kind dataset consisting of sim-

ulated and captured multiview data from a single-photon li-
dar. A description of the full set of simulated and captured
scenes is included in the supplemental, and all dataset and
simulation code will be made publicly available.

Simulated dataset We create the simulated dataset us-
ing a time-resolved version of Mitsuba 2 [48] which we
modify for efficient rendering of lidar measurements. The
dataset consists of one scene from Vicini et al. [58] and four
scenes made available by artists on Blendswap (https:

scanning
mirrors

pulsed
laser

beamsplitter

laser path

SPAD

Figure 3. Hardware prototype. A pulsed laser shares a path with
a single-pixel SPAD, and the illumination and imaging path are
controlled by scanning mirrors.

//blendswap.com/), which we ported from Blender to
our Mitsuba 2 renderer. The training views are set consis-
tent with the capture setup of our hardware prototype (de-
scribed below) such that the camera viewpoint is rotated
around the scene at a fixed distance and elevation angle, re-
sulting in 8 synthetic lidar scans used for training. We eval-
uate on rendered measurements from six viewpoints sam-
pled from the NeRF Blender test set [31]. The renders are
used to simulate SPAD measurements by applying the noise
model described in Equation 3 and setting the mean number
of photon counts to 2850 per occupied pixel and the back-
ground counts to 0.001 per bin, which we set to approximate
our experimentally captured data.

Hardware prototype. To create the captured dataset, we
built a hardware prototype (Fig. 3) consisting of a pulsed
laser operating at 532 nm that emits 35 ps pulses of light at
a repetition rate of 10 MHz. The output power of the laser
is lowered to < 1 mW to keep the flux low enough (roughly
150, 000 counts per second on average) to prevent pileup,
which is a non-linear effect that distorts the SPAD measure-
ments [42]. The laser shares an optical path with a single-
pixel SPAD through a beamsplitter, and a set of 2D scan-
ning mirrors is used to raster scan the scene at a resolution
of 512×512 scanpoints. A time-correlated single-photon
counter is used to record the photon timestamps with a total
system resolution of approximately 70 ps.

Captured dataset. We capture multiview lidar scans of
six scenes by placing objects on a rotation stage in front
of the scanning single-photon lidar and capturing 20 differ-
ent views in increments of 18 degrees of rotation. For each
lidar scan we accumulate photons during a 20 minute expo-
sure time to minimize noise in the transient measurements.
We bin the photon counts into histograms with 1500 bins

https://blendswap.com/
https://blendswap.com/
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Figure 4. Results on simulated data. We show images from depth-supervised NeRF baselines as well as color images and rendered transients
from our method after training on 2, 3, and 5 viewpoints. The proposed method produces cleaner results and generates 3D transients for
each viewpoint.

and bin widths of 8 ps (all raw timestamp data will also be
made available with the dataset). We set aside 10 views
sampled in 36 degree increments for testing and we use 8
of the remaining views for training. Prior to input into the
network for training, we normalize the measurement values
by the maximum photon count observed across all views.

Calibration. We calibrate the camera intrinsics of the
system using a raxel model [11] with corners detected from
two scans of checkerboard translated in a direction parallel
to the surface normal. This model calibrates the direction
of each ray individually, which is necessary because the 2D
scanning mirrors deviate from the standard perspective pro-
jection model [8]. Extrinsics are calibrated by placing a
checkerboard on a rotation stage and solving for the axis
and center of rotation that best align the 3D positions of the
checkerboard corners, where the 3D points are found using
the calibrated ray model along with the time of flight from
the lidar (see supplemental). Overall, accurate calibration
is an important and non-trivial task because multiview lidar
scans provide two distinct geometric constraints (i.e. stereo
disparity and time of flight) that must be consistent for scene
reconstruction.

5. Results

We evaluate our method on the simulated and captured
datasets and use transient neural radiance fields to render
intensity, depth, and time-resolved lidar measurements from
novel views.

Ground Truth

Urban NeRF Urban NeRF-M Proposed

Instant-NGP DS-NeRF

Figure 5. Comparison of depth maps recovered from simulated
measurements trained on 5 views of the lego scene.

Baselines. The intensity and depth rendered from our
method are compared to four other baseline methods that
combine point cloud-based losses with neural radiance
fields. For fairer comparison and to speed up training and
inference times, we implement the baselines by incorpo-
rating their loss terms into the recently introduced frame-
works of NerfAcc [21] and Instant-NGP [32] adopted by
our method. We train the following baselines using inten-
sity images (i.e., the photon count histograms integrated
over time) along with point clouds obtained from the pho-
ton count histograms using a log-matched filter, which is
the constrained maximum likelihood depth estimate [19].
• Instant-NGP [32] is used to illustrate performance with-

out additional depth supervision.
• Depth-Supervised NeRF (DS-NeRF) [7] incorporates an

additional loss term to ensure that the expected ray termi-
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Figure 6. Results on multiview lidar data captured with the hardware prototype and trained with 2, 3, and 5 viewpoints. For the proposed
method we show the rendered transients, intensity image, and individual transients for the indicated pixels.

Table 1. Simulated results comparing images and depth for the baselines and proposed approach.

PSNR (dB) ↑ LPIPS ↓ L1 (depth) ↓
Method 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

Instant NGP [32] 16.62 17.67 19.66 0.520 0.476 0.387 0.238 0.195 0.178
DS-NeRF [7] 19.28 19.35 21.07 0.431 0.436 0.376 0.109 0.115 0.119
Urban NeRF [46] 18.86 18.73 19.80 0.500 0.484 0.406 0.131 0.124 0.101
Urban NeRF w/mask [46] 20.91 20.81 22.34 0.410 0.382 0.339 0.051 0.038 0.029
Proposed 21.38 23.48 28.39 0.172 0.151 0.115 0.015 0.011 0.013

nation distance in volume rendering aligns with the point
cloud points.

• Urban NeRF [46] incorporates the ray-termination loss of
DS-NeRF while also adding space carving losses to pe-
nalize density along rays before and after the intersection
with a point cloud point.

• Urban NeRF with masking (Urban NeRF-M) modifies
Urban NeRF to incorporate an oracle object mask and ex-
tends the space carving loss to unmasked regions, provid-
ing stronger geometry regularization (additional details in
supplement).

Prior to input into the network, we normalize the images
and apply a gamma correction, which improves network fit-
ting to the high dynamic range data. Finally, after training
with each method, we estimate an associated depth map us-
ing the expected ray termination depth at each pixel, which
is the same metric used in the loss functions of the afore-
mentioned baselines.

5.1. Simulated Results

The method is compared to the baselines in simulation
across five scenes: chair, ficus, lego, hot dog, and statue.

In Fig. 4, we show RGB images rendered from novel views
using the baselines and our proposed method after training
on two, three, and five views. More extensive sets of results
on all scenes are included in the supplemental. We find that
views rendered from transient neural radiance fields have
fewer artifacts and spurious patches of density, as the ex-
plicit supervision from the photon count histograms avoids
the ill-posedness of the conventional multiview reconstruc-
tion problem.

Additional quantitative results are included in Table 1,
averaged across all simulated scenes. For the evaluation of
rendered RGB images, we normalize and gamma-correct
the output of the proposed method and the ground truth in
the same fashion as the baseline methods. Transient NeRF
recovers novel views with significantly higher peak signal-
to-noise ratio and better performance on the learned percep-
tual image patch similarity (LPIPS) metric [63] compared
to baselines. Transient measurements provide explicit su-
pervision of the unoccupied spaces in the scene, leading to
fewer floating artifacts, and to cleaner novel views.

The depth maps inferred from Transient NeRF are also
significantly more accurate than baselines (see Fig. 4).



Table 2. Evaluation of rendered intensity images and depth on captured results.

PSNR (dB) ↑ LPIPS ↓ L1 (depth) ↓
Method 2 views 3 views 5 views 2 views 3 views 5 views 2 views 3 views 5 views

Instant NGP [32] 16.44 16.52 16.39 0.358 0.307 0.274 0.115 0.076 0.053
DS-NeRF [7] 15.34 15.05 14.86 0.311 0.312 0.325 0.048 0.036 0.036
Urban NeRF [46] 16.90 15.91 15.93 0.403 0.328 0.231 0.017 0.015 0.014
Urban NeRF w/mask [46] 15.45 18.26 19.11 0.458 0.269 0.191 0.014 0.006 0.004
Proposed 22.11 21.83 22.72 0.271 0.212 0.172 0.005 0.006 0.010
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Figure 7. Comparison between reference and novel views of lidar
measurements, intensity slices, and depth. The x–y intensity slices
are visualized for times indicated by the red dashed lines.

One key advantage here is that we avoid supervision on
point clouds obtained by potentially noisy (and thus view-
inconsistent) per-pixel estimates of depth. By training on
the raw photon count histograms, the scene’s geometry is
allowed to converge to the shape that best explains all his-
tograms across all views, resulting in much higher geomet-
ric accuracy.

5.2. Captured Results

In Fig. 6 we show rendered novel views of intensity im-
ages from our method and baselines trained on captured
data with two, three, and five views. Results are shown on
the cinema, food, and baskets scenes (additional results in
the supplemental). The proposed approach results in fewer
artifacts and the rendered intensity images are more faith-
ful to reference intensity images captured from the novel
viewpoint. Quantitative comparisons of our method to base-
lines on captured data are shown in Table 2; note that we do
not have access to ground truth depth for captured data and
instead use depth from a log-matched filter on the ground
truth transient. We find that the method outperforms the
baselines in terms of PSNR and LPIPS of intensity images
rendered from novel views. While performance on captured
data does not improve as much as observed on simulated
data with increasing numbers of viewpoints, we attribute
this to small imperfections (≈1 mm) in the alignment of the
lidar scans after estimating the camera extrinsics. Since DS-
NeRF trains explicitly on depth without additional regular-
ization, it is especially sensitive to camera perturbations and
can be outperformed in some cases by Instant NGP which
has no additional geometry constraints. Our approach ap-

pears somewhat less sensitive to these issues, perhaps be-
cause geometry regularization is done implicitly through a
photometric loss on the lidar measurements.

We notice some degradation in depth accuracy relative
to simulation, likely due to imperfections in the estimated
extrinsics. Sub-mm registration of the lidar measurements
would likely improve results, but achieving such precise
registration is non-trivial and beyond the scope of our cur-
rent work.

Finally, in Fig. 5.2 we compare captured measurements
to rendered transients and depth rendered for the boots
scene trained on 2 viewpoints. We recover the time-
resolved light propagation from a novel view, shown in x–y
slices of the rendered transients over time. The depth map
recovered from the novel view appears qualitatively similar
to the ground truth (estimated from captured measurements
using a log-matched filter [41]). We show additional 3D
reconstruction results in the supplemental.

6. Discussion
Our work brings NeRF to a new dimension of imag-

ing at transient timescales, offering new opportunities for
view synthesis and 3D reconstruction from multiview li-
dar. While our work is limited to modeling the direct re-
flection of laser light to perform lidar view synthesis, our
dataset captures much richer light transport effects, includ-
ing multiple bounces of light and surface reflectance prop-
erties that could open avenues for future work. In particu-
lar, the method and dataset may help enable techniques for
intra-scene non-line-of-sight imaging [56, 37, 26, 28] (i.e.,
recovering geometry around occluders within a scene), and
recovery of the bidirectional reflectance distribution func-
tion via probing with lidar measurements [33]. Our method
is also limited in that we do not explore more view syn-
thesis in more general single-photon imaging setups, such
as when the lidar and SPAD are not coaxial; we hope to
explore these configurations in future work. The proposed
framework and the ability to render transient measurements
from novel views may be especially relevant for realistic
simulation for autonomous vehicle navigation, multiview
remote sensing, and view synthesis of more general tran-
sient phenomena.
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