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Abstract
Vision in adverse weather conditions, whether it be snow,

rain, or fog is challenging. In these scenarios, scatter-
ing and attenuation severly degrades image quality. Han-
dling such inclement weather conditions, however, is essen-
tial to operate autonomous vehicles, drones and robotic ap-
plications where human performance is impeded the most.
A large body of work explores removing weather-induced
image degradations with dehazing methods. Most meth-
ods rely on single images as input and struggle to gener-
alize from synthetic fully-supervised training approaches or
to generate high fidelity results from unpaired real-world
datasets. With data as bottleneck and most of today’s
training data relying on good weather conditions with in-
clement weather as outlier, we rely on an inverse render-
ing approach to reconstruct the scene content. We intro-
duce ScatterNeRF, a neural rendering method which ade-
quately renders foggy scenes and decomposes the fog-free
background from the participating media – exploiting the
multiple views from a short automotive sequence without
the need for a large training data corpus. Instead, the ren-
dering approach is optimized on the multi-view scene itself,
which can be typically captured by an autonomous vehicle,
robot or drone during operation. Specifically, we propose
a disentangled representation for the scattering volume and
the scene objects, and learn the scene reconstruction with
physics-inspired losses. We validate our method by captur-
ing multi-view In-the-Wild data and controlled captures in
a large-scale fog chamber. Our code and datasets are avail-
able at https://light.princeton.edu/scatternerf.

1. Introduction
Imaging and scene understanding in the presence of scat-

tering media, such as fog, smog, light rain and snow, is an
open challenge for computer vision and photography. As
rare out-of-distribution events that occur based on geogra-
phy and region [8], these weather phenomena can drasti-
cally reduce the image quality of the captured intensity im-
ages, reducing local contrast, color reproduction, and image
resolution [8]. A large body of existing work has investi-

Figure 1: ScatterNeRF produces accurate renderings for
scenes with volumetric scattering (b). By learning a dis-
entangled representation of participating media and clear
scene, the proposed method is able to recover dehazed scene
content (c) with accurate depth (d).

gated methods for dehazing [57, 5, 49, 29, 73, 77] with the
most successful methods employing learned feed-forward
models [57, 5, 49, 29, 73]. Some methods [49, 5, 35] use
synthetic data and full supervision, but struggle to over-
come the domain gap between simulation and real world.
Acquiring paired data in real world conditions is challeng-
ing and existing methods either learn natural image priors
from large unpaired datasets [74, 73], or they rely on cross-
modal semi-supervision to learn to separate atmospheric ef-
fects from clear RGB intensity [57]. Unfortunately, as the
semi-supervised training cues are weak compared to paired
supervised data, these methods often fail to completely sep-
arate atmospheric scatter from clear image content, espe-
cially at long distances. The problem of predicting clear
images in the presence of haze is an open challenge, and
notably harsh weather also results in severely impaired hu-
man vision – a major driver behind fatal automotive acci-
dents [4].

As the distribution of natural scenes with participating
media is long-tailed in typical training datasets [14, 60, 19,
18, 8], this also makes training and evaluation of computer
vision tasks that operate on RGB streams in bad weather
challenging. For supervised approaches to scene under-
standing tasks, these ”edge” scenarios often directly re-
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sult in failure cases, including detection [8], depth estima-
tion [20], and segmentation [52]. To tackle weather-based
dataset bias, existing methods have proposed augmentation
approaches that either simulate atmospheric weather effects
on clear images [52, 65] or they employ fully synthetic sim-
ulation to generate physically-based adverse weather sce-
narios [13, 23, 52]. Unfortunately, both directions cannot
compete with supervised training data, either due to the do-
main gap between real and synthetic data, or, as a result of
an approximate physical forward model [65].
As such, the capability of both physically accurate model-
ing and separating scattering in participating media is es-
sential for imaging and scene understanding tasks.

In this work, we depart from both feed-forward dehaz-
ing methods and fully synthetic training data, and we ad-
dress this challenge as an inverse rendering problem. In-
stead of predicting clean images from RGB frames, we
propose to learn a neural scene representation that ex-
plains foggy images with a physically accurate forward
rendering process. Once this representation is fitted to a
scene, this allows us to render novel views with real-world
physics-based scattering, disentangle appearance and ge-
ometry without scattering (i.e., reconstruct the dehazed
scene), and estimate physical scattering parameters accu-
rately. To be able to optimize a scene representation effi-
ciently, we build on the large body of neural radiance field
methods [45, 75, 69, 70, 72, 47, 32, 9, 51, 58, 10, 76, 7, 66].
While existing NeRF methods assume peaky ray termina-
tion distributions and free-space propagation, we propose a
forward model that can accurately model participating me-
dia. As an inductive bias, the scene representation, by de-
sign, separates learning the clear 3D scene and the partic-
ipating media. We validate that the proposed method ac-
curately models foggy scenes in real-world and controlled
scenes, and we demonstrate that the disentangled scene in-
tensity and depth outperform existing dehazing and depth
estimation methods in diverse driving scenes.

Specifically, we make the following contributions:

• We propose a method to learn a disentangled repre-
sentation of the participating media by introducing the
Koschmieder scattering model into the volume render-
ing process.

• Our approach adds a single MLP used to model the
scattering media proprieties and does not require any
additional sampling or other procedures, making it a
lightweight framework in terms of both computation
and memory consumption.

• We validate that our method learns a physics-based
representation of the scene and enables control over
its hazed appearance. We confirm this using real data
captured in both controlled and In-the-Wild settings.

2. Related Work

Imaging and Vision in Participating Media. As real
world data in participating media is challenging to cap-
ture [8, 36, 2, 1], a large body of work introduces simu-
lation techniques for snowfall [43], rainfall [24, 23], rain-
drops on the windshield [68], blur [33], night [53] and
fog [57, 52, 39, 17]. Using this data, existing meth-
ods investigate pre-processing approaches using dehazing
[57, 5, 49, 29, 73, 77, 25, 35], deraining [27, 16] and
desnowing [43]. Early works on image dehazing as [25, 64]
explore image statistics and physical models to estimate the
airlight introduced by the fog scattering volume and invert
the Koschmieder fog model. Later, CNN approaches [35]
and [29] learn to predict the airlight and transmission, with
the same goal of inverting the Koschmieder model. How-
ever, this disjoint optimization can lead to error accumu-
lation. Hence, [49, 5, 57, 73, 22] model the fog removal
through a neural network learned end-to-end. As such, ex-
isting methods differ substantially in network structure and
learning methodology. For example, some methods rely on
GAN architectures [49, 57], transformer-based backbones
[22] or encoder-decoder structures [5]. For model-learning,
the approaches apply semi-/self-supervised [73, 57], fully
supervised [49, 5] and test time optimization techniques
[42, 29]. All of these methods have in common that they
do not explore multiple views to reconstruct a clear im-
age. To overcome this methodological limitation we in-
troduce a novel multi-view dataset in hazy conditions in
Sec. 4 and explore reconstruction from multiple views for
optimal image reconstruction through neural rendering ap-
proaches. Most similar to our method are the approaches
from Sethuraman et al. [56] and from Levy et al. [34] that
reconstruct scenes in underwater conditions which requires
tackling strong color aberrations and specular reflections
specific to the underwater domain.

Neural Rendering Methods for Large Scale Scenes A
rapidly growing body of work is capable of representing
unbounded outdoor scenes, such as the ones tackled in
this work, with rich detail both in close and far range.
NeRF++ [76] achieves this by using two NeRFs, one to
model the foreground and one for the background scene.
DONeRF [46] warps the space by radial distortion to bring
the background closer. Recently, [7] has tackled this prob-
lem by proposing a non-linear parametrization technique
suitable for the mip-NeRF algorithm [6]. For very large-
scale scenes, too big to be fitted by a single NeRF, several
works [62] [66] have explored the idea of learning multiple
NeRFs for subparts of the scene.

Clear Scene Priors Given the under-constrained nature of
scene reconstruction from a sparse set of views, novel views
rendered by NeRFs are frequently afflicted by floating ar-
tifacts [7, 12] or not able to properly generalize to novel
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Figure 2: We show the ray termination distribution along two cast rays for our approach and two references NeRF models.
The regularization methods proposed in DS-NeRF [12] and mip-NeRF-360 [7] represent the accumulated transmittance T as
a step function, whereas ScatterNeRF models the scattering process.

views and hence fail to render images from unseen poses
correctly [30, 28]. To tackle this issue, several works have
recently proposed the introduction of different regulariza-
tion techniques. In [30], an entropy-based loss is intro-
duced in order to enforce a sparsity constraint over the
scene. Analogously, recent models exploiting an estimated
depth as training cue [12, 50] implicitly enforce a sparsity
constrain of the ray termination distributions by penaliz-
ing non-zero probabilities lying far from the prior estimated
depth. Mip-NeRF360 [7] relies on a regularization tech-
nique aimed at encouraging a unimodal peaky distribution
for the termination probability of a ray. While such methods
work well for clear scenes, they are based on the assump-
tion that most of the scene density is null, except for where
there are solid objects. As such prior is not applicable in the
presence of a participating media in the air, such approaches
are not suitable for scenes with scattering media.

We propose to learn a separate representation of the clear
scene and the participating media. This allows us to poten-
tially use any of the above-mentioned regularization tech-
nique on the clear scene model without compromising on
the hazed scene reconstruction.

3. Disentangled Scattering Neural Radiance
Fields

ScatterNeRF has five integral parts, namely the underly-
ing physical model in Sec. 3.1, the formulation of the neural
radiance field in Sec. 3.2, the formulation of the loss func-
tions in Sec. 3.3, the details on ray sampling in Sec. 3.4 and
implementation in Sec. 3.5. We describe these components
in the following.

3.1. Physical Scattering Model

Large scattering volumes can be approximated by the
Koschmieder model [31]. For each pixel, we model the
attenuation representing the lost intensity due to scattered
direct light of an object and the contribution of the airlight
cp caused by ambient light scattered towards the observer,

CF = lCc + (1− l)Cp, (1)

with l being the transmission, CF corresponding to the ob-
served pixel value and Cc the clear scene. The transmission

l can be computed from the attenuation coefficient σp and
the depth D,

l = exp(−σpD). (2)

In existing methods [52] both parameters σp and airlight cp
are globally constant. Koschmieder’s model is equivalent
to a volume rendering NeRF [45], Eq. (3), with scattering
density σp and airlight Cp set constant, and ray integration
from tn to a maximum distance tf . For simplicity of no-
tation, we omit the viewing direction d. Starting with the
forward model

CF (r) =

∫ tf

tn

TF (t)σF (r(t))cF (r(t))dt, (3)

and assuming two disjoint additive volume densities σc for
the scene and σp for the scattering media (σF = σp + σc),
the volume rendering equation can be formulated as

CF (r) = l(r)Cc(r) + (1− l(r))Cp, (4)

where the integrated object color Cc is defined with emitted
color cc(r) at position r,

Cc(r) =

∫ tf

D

Tc(t)σc(r(t))cc(r(t))dt. (5)

The transmission then is dependent on r leading to
exp (−σpD). Here, the subscript denotes if the clear scene
object c or participating media p is modeled. Finally, the
value of the foggy pixel CF (r) can be estimated by inte-
grating cF (r(t)) along one camera ray vector r. We denote
ri = [xi;di] ∈ R5 consisting of the 3D position x and di-
rection d.
Next, we can relax the constraints on σp and cp, and allow
them to approximate arbitrary values. This results in,

CF (r) =

∫ tf

tn

TF (t)(σp(r(t))cp(r(t))

+ σc(r(t))cc(r(t)))dt,

(6)

with,

TF (t) = exp

(
−
∫ t

tn

(σc(r(s)) + σp(r(s)))ds

)
, (7)

TF (t) = Tp(t)Tc(t), (8)
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which can be expressed as

CF (r) =

∫ tf

tn

Tc(t) (Tp(t)σp(r(t))cp(r(t)))︸ ︷︷ ︸
Fog Contribution

+ Tp(t) (Tc(t)σc(r(t))cc(r(t)))︸ ︷︷ ︸
Clear scene contribution

dt. (9)

3.2. Neural Radiance Model

Further simplifications of Eq. (3) can be found by solv-
ing the integral through numerical quadrature needed for the
discrete neural forward network. The numerical quadrature
leads to,

CF (r) =

N∑
i

wF (r(ti))cF (r(ti)). (10)

wF (ri) = TF (ri)(1− exp ((σp(ri) + σc(ri)) δj) ,

(11)

TF (ri) = exp

−
i−1∑
j=1

(σp(ri) + σc(ri)) δi

 , (12)

δi = ti+1 − ti, and (13)

cF (ri,d) =
σc(ri)cc(ri) + σp(ri)cp(ri)

σp(ri) + σc(ri)
. (14)

To facilitate the learning of two independent volume repre-
sentations, we model each part independently by one NeRF.
The parameters σi, ci for i ∈ {c, p} are predicted by a
multi-layer perceptron (MLP) as,

ci, σi = fi (γ(x)) . (15)

For the clear scene NeRF we adopt a similar strategy as in
[45] and optimize simultaneously two MLPs, fccoarse and
fcfine

using the same loss formulation but different sam-
pling procedure, as detailed in Sec. 3.3 and Sec. 3.4. The co-
ordinates are encoded by the function γ following [45, 63].
This learning disentanglement of the scene and scatter rep-
resentation allows us to render scenes with different fog
densities by scaling σp or even dehaze the image entirely
by setting σp = 0.
For the dehazing task the image can be rerendered with
σp = 0 and the formulation reduces to the scene model
only leading to,

CF (r) = Cc(r) =

N∑
i

wc(r(ti))cc(r(ti)), (16)

wc(r(ti)) = Tc(ti)(1− exp (σc(r(ti))δi) , (17)

Tc(ti) = exp

−
i−1∑
j=1

(σc(r(tj))δj

 . (18)

3.3. Training Supervision

To learn the neural forward model we supervise the re-
constructed images with a pixel loss between predicted and
training frames Lrgb, align the observable airlight LA, su-
pervise the scene depth with LD, enforce discrete clear
scene volumetric density Lec and enforce the scattering
density to be disjoint from the scene objects in LeF . In the
following, network predictions are marked with a hat and
ground-truth values are marked with a bar.
Color Supervision The image loss between ground-truth
C̄F and reconstructed haze images ĈF is used for direct
supervision as

LrgbF = Er

[
||ĈF (r)− C̄F (r)||22

]
. (19)

Airlight Color Supervision As discussed in Sec. 3.1, the
model separation allows us to supervise the airlight directly.
We minimize the variance of the predicted ĉp with respect
to a ground-truth airlight c̄p estimated following [64]. The
target airlight c̄p is computed as follows,

c̄p(r) =
z2(r)IF (r) + λc0p(r)

z2(r) + λ
. (20)

Here IF is the relative luminance of the hazed image esti-
mated as IF (r) = ξ · lin(C̄F (r)), that is a linear combina-
tion of the linearized RGB values [3] obtained by decom-
panding the color image by applying lin(C̄F ) [61]. c0p is an
initial global constant airlight estimate computed with the
dark channel prior following [25], z = 1/(l − 1) and λ is a
weighting factor. The total loss can be written as,

LA = Er

[
||ĉp(r)− c̄p(r)||22

]
. (21)

Clear Scene Entropy Minimization To regularize fc, we
follow [12] according to which the rays cast in the scene
have peaky unimodal ray termination distributions. Thus,
we add a loss to minimize its distribution entropy,

Lec = Er

[
−
∑
i

ŵci(r) · log (ŵci(r))

]
. (22)

Foggy Scene Entropy Maximization Analogously to
Eq. (22), we regularize fp. Thereby, σ̂p is fitted in semi-
supervised fashion during the optimization. This allows us
to model fog inhomogeneities, for example close to hot sur-
faces. To achieve this goal we apply an entropy-based loss
which allows the network fp to learn a spatially-varying me-
dia density. Based on the assumption of almost-uniformity
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Figure 3: Examples of our proposed In-the-Wild and con-
trolled environment dataset. The figure demonstrates the
diversity of the scenes and the fog densities.

for extended fog volume, we enforce that this has to be rep-
resented by the fog volume density σ̂F through maximizing
the entropy as follows,

LeF = Er

[∑
i

α̃Fi
(r) · log(α̃Fi

(r))

]
, (23)

where α̃Fi =
α̂Fi∑
j α̂Fj

and α̂Fi = 1− exp((σ̂pi + σ̂ci)δi).
The entropy maximization relies on the scene volume
density σ̂c to disentangle both distributions and not only
distribute the fog volume density σ̂F throughout the scene.
We minimize this loss only for σ̂p, not σ̂c .

Estimated Depth Supervision To supervise the scene rep-
resentation further we supervise the scene depth D̂c similar
to [50], through the depth D̄ estimated from the stereo sen-
sor setup. Thereby, the depth can be estimated as follows,

D̂c(r) =

N∑
i

ŵc(r(ti))ti (24)

which leads to,

Ldepth = Er

[
||D̂c(r)− D̄(r)||22

]
. (25)

We use a pretrained RGB stereo algorithm [37] to compute
D̂.
Total Training Loss Combining the five losses, we obtain
the following loss formulation,

Ltot = ψ1LrgbF + ψ2LA + ψ3Lec + ψ4LeF + ψ5Ldepth.
(26)

Where ψ1,...5 are the loss weights, provided in the Supple-
mentary Material.

3.4. Sampling

We follow the hierarchical volume sampling strategy
proposed in [45] to sample the query points for the radi-
ance field networks. However, instead of sampling across

the whole volume density we adapt the approach to our de-
composed volume densities σc and σF . As σF is regular-
ized to be approximately constant across the scene, the re-
sampling procedure is not going to be performed using the
scene weights wF = TF (1 − exp(σF δ)) but rather using
the clear scene wc = Tc(1 − exp(σcδ)). We apply this ap-
proach to follow an importance sampling and reconstruct
scene objects by sampling close to object boundaries.

3.5. Implementation Details

We train for 250’000 steps and a batch size of 4096
rays. As optimizer we use ADAMW [44] with β1 = 0.9,
β2 = 0.999, learning rate 5 · 10−4 and weight decay fac-
tor of 10−2. Our code implementation is based on Pytorch
[48] and we train on four NVIDIA RTX A6000. The NeRF
MLPs fccoarse and fcfine

follow Mildenhall et al. [45],
while we use fewer hidden layers for fp. The network ar-
chitecture and other hyper-parameters are listed in the Sup-
plementary Material.

4. Dataset
To evaluate the proposed method, we collect both an

automotive In-the-Wild foggy dataset and a controlled fog
dataset. Example captures illustrating the dataset are shown
in Fig. 3. In total, we collect 2678 In-the-Wild foggy images
throughout nine different scenarios. The sensor set for the
In-the-Wild dataset consists of an Aptina-0230 stereo cam-
era pair and a Velodyne HDL64S3D laser scanner. Cam-
era poses are estimated with the hierarchical localization
approach [54, 55], a structure from motion pipeline opti-
mized for robustness to changing conditions. The training
and testing split was done by randomly choosing 30% of
the images as test set.Each scene contains between 150 and
300 images. Ground-truth depth data is estimated with the
stereo-camera method described in [38]. The controlled
fog dataset is captured in a fog chamber where fog with
varying visibilities can be generated. We capture 903 im-
ages in a large-scale fog chamber with clear ground-truth
and two different fog densities. Further ground-truth depths
are captured through a Leica ScanStation P30 laser scanner
(360°/290° FOV, 1550 nm, with up to 1M points per sec-
ond, up to 8” angular accuracy, and 1.2mm + 10 parts per
million (ppm) range accuracy). Each point cloud consists
of approximately 157M points and we accumulate multiple
point clouds from different positions to reduce occlusions
and increase resolution.

5. Assessment
Next, we validate the proposed method by ablating the

different components, confirming their effectiveness, as-
sessing the quality of scene reconstructions in foggy scenes,
the decomposition into dehazed scene content, and the
scene depth reconstruction.
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Tram Station Farm Intersection Suburb Speed Control
METHOD LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑

Aug-NeRF [11] 0.26 39.18 0.964 0.316 39.83 0.968 0.275 40.38 0.971 0.259 40.18 0.977 0.277 40.54 0.974
DS-NeRF [12] 0.265 39.99 0.967 0.332 41.27 0.97 0.273 42.19 0.977 0.271 42.89 0.978 0.281 42.8 0.976
DVGO [59] 0.404 35.46 0.923 0.441 37.49 0.93 0.4 39.35 0.955 0.36 39.68 0.963 0.382 39.16 0.958
Mip-NeRF [6] 0.333 40.29 0.964 0.337 40.52 0.968 0.271 41.72 0.975 0.27 41.23 0.977 0.28 41.72 0.975
Mip-NeRF360 [7] 0.222 40.92 0.971 0.28 41.25 0.973 0.228 42.17 0.976 0.244 41.91 0.977 0.247 42.2 0.977
NeRF [45] 0.278 39.06 0.964 0.354 40.86 0.968 0.293 41.84 0.974 0.271 41.6 0.978 0.293 42.39 0.976
NeRF++ [76] 0.288 39.54 0.962 0.36 41.07 0.966 0.306 42.11 0.972 0.293 42.07 0.976 0.304 42.41 0.974
Plenoxels [15] 0.476 30.9 0.91 0.498 32.28 0.939 0.478 29.93 0.934 0.486 28.29 0.928 0.489 29.34 0.934
Ref-NeRF [67] 0.4 36.64 0.94 0.377 39.85 0.966 0.377 40.53 0.964 0.343 40.47 0.972 0.366 41.13 0.967
ScatterNeRF 0.22 41.45 0.975 0.299 42.57 0.972 0.235 44.58 0.98 0.234 44.44 0.981 0.253 43.88 0.978

Road Fork Adds Construction Countryside Average In-the-Wild
METHOD LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑

Aug-NeRF [11] 0.248 41.29 0.979 0.242 41.75 0.981 0.302 38.99 0.964 0.286 40.74 0.978 0.274 40.32 0.973
DS-NeRF [12] 0.273 42.59 0.977 0.252 43.22 0.982 0.318 40.94 0.964 0.29 43.6 0.98 0.284 42.16 0.975
DVGO [59] 0.376 38.51 0.947 0.349 40.14 0.966 0.376 38.92 0.95 0.368 40.55 0.968 0.384 38.81 0.951
Mip-NeRF [6] 0.272 41.88 0.976 0.25 42.83 0.981 0.321 40.2 0.963 0.291 43.08 0.98 0.292 41.5 0.973
Mip-NeRF360 [7] 0.235 42.37 0.978 0.225 42.55 0.981 0.268 41.53 0.969 0.241 42.97 0.981 0.243 41.99 0.976
NeRF [45] 0.287 41.84 0.975 0.256 43.67 0.982 0.332 40.36 0.962 0.305 43.39 0.979 0.297 41.67 0.973
NeRF++ [76] 0.292 42.38 0.975 0.267 43.82 0.98 0.336 40.69 0.962 0.312 43.56 0.978 0.306 41.96 0.972
Plenoxels [15] 0.481 29.85 0.933 0.456 29.72 0.943 0.497 29.49 0.922 0.473 29.47 0.938 0.482 29.92 0.931
Ref-NeRF [67] 0.382 39.61 0.962 0.376 40.81 0.967 0.365 40.04 0.96 0.339 42.81 0.976 0.369 40.21 0.964
ScatterNeRF 0.231 44.45 0.981 0.228 45.27 0.983 0.255 42.96 0.973 0.265 44.64 0.982 0.247 43.8 0.978

Table 1: Quantitative comparison of the proposed ScatterNeRF and state-of-the-art methods on In-the-Wild sequences. Best results in
each category are in bold and second best are underlined. Last column in the second row presents the average over all sequences.

Toyota Car Accident
METHOD LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑

Aug-NeRF [11] 0.521 29.81 0.934 0.48 25.08 0.822
DS-NeRF [12] 0.535 29.52 0.926 0.502 26.71 0.853
DVGO [59] 0.613 22.65 0.801 0.607 22.22 0.847
Mip-NeRF [6] 0.513 30.42 0.937 0.611 24.88 0.87
Mip-NeRF360 [7] 0.53 30.59 0.938 0.623 26.59 0.878
NeRF [45] 0.505 29.81 0.937 0.614 24.97 0.877
NeRF++ [76] 0.507 30.0 0.937 0.611 25.47 0.879
Plenoxels [15] 0.582 20.48 0.872 0.607 22.07 0.852
Ref-NeRF [67] 0.498 29.11 0.933 0.616 24.7 0.864
ScatterNeRF 0.505 30.82 0.938 0.509 27.42 0.878

Table 2: Quantitative comparison of the proposed ScatterNeRF
and state-of-the-art methods on controlled scenes. Best results in
each category are in bold and second best are underlined.

LPIPS PSNR SSIM

NeRF 0.278 39.06 0.964
NeRF + Koschmieder 0.281 39.54 0.960
NeRF + Depth [50] 0.290 40.03 0.972
ScatterNeRF w/o cleared sampling 0.219 40.70 0.975
ScatterNeRF 0.22 41.45 0.975

Table 3: Ablation study of the ScatterNeRF contribution for a
subset of the In-the-Wild dataset.

Figure 4: Qualitative comparison between Neural Scene
Graphs (NSG) [47] and its combination with our proposed
network (ScatterNSG).

5.1. Ablation

In order to assess the role and contribution of the differ-
ent components of our framework, we conduct an ablation
study whose results are presented in Tab. 3. We consider
as starting point the ”NeRF” [45]. Its PSNR on the In-the-
Wild subset dataset is 39.06 dB. By adding the depth super-
vision Eq. (25) and Eq. (22) the model’s PSNR improves
by 0.97 dB. However, as shown in Fig. 2, a NeRF trained
in such a way does not produce a physically accurate repre-
sentation of the scene, as it does not model the participating
media present in the scene, but rather represents it as a clear
scene. Adding the scattering media fp in ”ScatterNeRF w/o
cleared sampling”, together with its two losses LA and LeF

leads to a PSNR of 40.7 dB. Finally, adding the sampling
strategy in the full ”ScatterNeRF” helps the model achieve
better results, with a PSNR of 41.45 dB, summing up to a
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SEQUENCE ScatterNerf PFF D4 EPDN ZeroScatter ZeroRestore MAP-net

Tram Station
Fi

D
↓

348.72 376.39 342.10 345.66 355.27 340.59 301.30
Farm 319.95 404.89 360.53 347.85 413.08 359.53 349.12
Intersection 349.57 387.09 358.63 353.27 397.71 366.82 364.04
Suburb 283.43 405.37 299.57 301.63 347.38 350.11 286.59
Speed Control 270.86 409.94 332.78 328.08 358.97 339.19 289.20
Road Fork 284.69 419.08 318.84 314.66 355.30 325.45 307.25
Adds 322.19 441.33 328.59 330.71 380.70 342.91 335.87
Construction 329.22 381.51 318.71 315.16 339.66 310.11 308.18
Countryside 289.56 435.71 326.05 321.35 337.88 321.29 303.70

Toyota

PS
N

R
↑ 13.47 12.13 11.74 11.62 13.39 13.41 N/A

Car Accident 11.66 10.76 10.32 10.04 9.28 12.02 N/A

Table 4: Quantitative dehazing comparison on In-the-Wild
dataset with FiD score and on controlled dataset with PSNR. The
best results in each category are in bold and the second best are
underlined.

Figure 5: Qualitative comparison of dehazed images on real-
world automotive measurements. The proposed ScatterNeRF en-
ables enhanced contrast and visibility compared to state-of-the-art
descattering methods.

6.12% PSNR increase over the baseline.
We also analyze an additional model, here called
”NeRF+Koschmieder”, in which a Koschmieder model is
added to the NeRF output, and we can note in Tab. 3 its
limited performances due to its over-simplifications.

5.2. Foggy Scene Reconstruction

We compare our proposed method with NeRF [45],
Mip-NeRF [6], DVGO [59], Plenoxel [15], Ref-NeRF [67],
two methods for unbounded scenes [76, 7] and two NeRFs
with auxiliary regularization [50, 11]. Qualitative results
are presented in Fig. 6. The baseline methods struggle with
object edges and fine structures, which our method is able
to reconstruct for novel views. Our method is the only
approach able to reconstruct the edges cleanly achieving
to the highest PSNR scores for In-the-Wild captures and
fog chamber captures. On average, the proposed method
improves on average by 2.13 dB the PSNR of NeRF and
by 1.64 dB to the next best model. For single sequences
with high fog densities, improvements in the reconstruction
of up to 2.39 db are measurable. For the SSIM metric it
outperforms all other approaches except on the light foggy
scene dubbed ”car accident” where it seconds [15].

5.3. Generalizability

As our proposed method does not require major changes
to the sampling procedure, rendering or scene representa-
tion architecture, it can be easily integrated with existing
neural rendering methods. To demonstrate this, we extend
NSG [47] to foggy scenes and integrate the decoupling of
scene and scattering media. A qualitative comparison be-
tween the base model and the one enhanced with our frame-
work is shown in Fig. 4, where it is possible to observe both
the finer details at long distances in addition to the possi-
bility to remove the scattering media and better reconstruct
the vehicle leaving the scene. Quantitatively this improve-
ment is reflected in an improvement of scene reconstruc-
tion PSNR, increasing from 29.78 dB to 30.67 dB. This
also validates that it is possible to employ our framework
also in the presence of moving objects, which is a com-
mon occurrence in automotive scenes. We discuss in the
supplementary material other examples of the integration
of ScatterNeRF in state-of-the-art neural radiance fields to
augment their scope.

5.4. Dehazing

We quantify the ability of ScatterNeRF to learn a disen-
tangle representation between objects and scattering media,
and hence to render the corresponding clear scene which
is effectively dehazing the foggy image. To this end, we
compare against the state-of-the art dehazing methods PFF
[5], D4 [73], EPND [49], ZeroScatter [57], ZeroRestore
[29] and MAP-Net [71]. For the In-the-Wild scenes, we
rely on the FiD score [26] to evaluate the quality of the de-
hazing. As ground-truth data is unavailable, this score al-
lows us to compare the dehazed sequences with a similar
clear-weather scene collected with the automotive setup de-
scribed in Sec. 4. For the controlled environment dataset
the PSNR can directly be evaluated by warping a nearby
clear-weather image to the respective foggy image. In con-
trast to other dehazing methods operating on single frames,
ScatterNeRF learns a consistent representation of the en-
tire sequence. As a result, the dehazing is consistent across
consecutive frames, whereas the baseline methods often are
affected by flickering effects. This is also reflected in the
quantitative results in Tab. 4. Here, ScatterNeRF outper-
forms the baseline methods on almost all sequences indicat-
ing a consistent dehazing across the entire sequence. Fur-
thermore, the qualitative results in Fig. 5 from the controlled
fog chamber dataset reveal another strength of ScatterN-
eRF: ScatterNeRF is the only method able to reconstruct the
cart behind the vehicle as it can leverage information from
the learned representation of the entire sequence. This re-
sults in a higher PSNR indicating an improved dehazing on
the respective sequence. Additionally, as evident in Fig. 5,
ScatterNeRF achieves visually enhanced contrast compared
to existing dehazing methods.
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Figure 6: Qualitative comparisons of the reconstruction of foggy scenes with ScatterNeRF and state-of-the-art neural rendering methods.
ScatterNeRF is able to represent the participating media much better than existing rendering methods.

Figure 7: Qualitative results of the reconstructed depth for
[37] and our method. While classical feed-forward depth
estimation algorithm can not reconstruct finer details in the
far back due to the fog disturbance, our method is able to
render a detailed depth map thanks to its consistency con-
strains across all the training frames.

5.5. Depth Estimation
Depth reconstruction in foggy conditions is unreliable

and performs poorly for far objects due to the loss of scene
information caused by the scattering medium [21]. This can
be seen in Fig. 7 where the second pole and the building in
the far background is not visible in the depth estimated us-
ing [37], due to the lack of contrast in stereo matching. On
the other hand, our approach enforces consistency across
multiple frames and therefore achieves accurate depth also
for areas distant from the cameras. Quantitatively, we com-
pare our results with state-of-the-art RGB depth-estimation
methods, namely the monocular algorithms DepthFormer
[40] and BinsFormer [41], as well the stereo algorithm
CREStereo [37] with a 22cm baseline. Using the LiDAR
pointcloud as groundtruth, the Mean Absolute Depth Pre-
diction Error (MAE) for our method is 3.72m, while we get

5.84m for DepthFormer, 5.85m for BinsFormer and 4.73m
for CREStereo. Our algorithm outperforms the baselines by
more than 21% MAE, demostrating the superiority of our
approach for accurate depth reconstruction of foggy scenes.

6. Conclusion
We introduce ScatterNeRF, a neural rendering method

that represents foggy scenes with disentangled representa-
tions of the participating media and scene. We model light
transport in the presence of scattering with disentangled
volume rendering, separately modeling the clear scene and
fog, and introduce a set of physics-based losses designed to
enforce the division between media and scene. Extensive
experiments with both In-the-Wild and controlled scenario
measurements validate the proposed approach. We demon-
strate that ScatterNeRF is capable of rendering the learned
scene without scattering media and can be hence used to
alter or remove the haze from a sequence video, reaching
quality comparable to state-of-the-art image dehazing algo-
rithms – solely by fitting image observations without any
forward neural network for dehazing or denoising.
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